
Solid State Physics  Phys(471)



Having studied the dispersion relation of phonons in solids, we
now turn to main properties of solids that arise from those
collective lattice vibrations . In specific, we will discuss;

1- Heat Capacity 2- Thermal conductivity
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General definition of heat capacity is; the amount of heat 
required to change  one mole of body's temperature by a 
given amount

At constant volume all internal energy E converts to heat, i.e. 
Q= E , then one can define the specific heat at constant 
volume as;

Where Q is the heat required to increase the temperature of one 
mole by T.

HEAT CAPACITY OF LATTICE 

(1)
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Vibration of lattice may be treated as that of a harmonic oscillator. 
Thus, the average energy for 1D oscillator is

Therefore, the total thermal energy per mole in 3D is

where NA & R are Avogadro’s no. and the universal gas constant
respectively. Substituting into (1), we find

This law of Dulong and Petit (1819) predicts a constant value to Cv , 
and it is approximately obeyed by most solids at high T (  300 K). 

A- Classical Theory:

But by the middle of the 19th century it was clear that CV  0 as T  0

for solids.  



B- Einstein Model:
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 Considering the atoms as independent oscillators, vibrating 
with a common frequency. 
 Treating the oscillator quantum mechanically, where the 
average energy for 1D oscillator is 

 At high T , 

 At low T , the total energy is;  

Where the common frequency of the oscillators, E , is 
known as Einstein frequency.

(and the classic value is reached) 



 Substituting into (1), we find
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 Introducing Einstein temperature,

the above expression can be reduced to

Low T limit:

High T limit: 1
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So, Einstein model indicates that Cv approaches zero exponentially. 
But careful measurements show that it does that slower. 

High T behavior:  
Reasonable agreement 
with experiment

Low T behavior: 
as T  0

CV  0 too quickly!



C- Debye Model:
 Treating the atoms as coupled dependent oscillators  vibrating 
collectively as sound wave follows the dispersion relation:
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 Total energy in such system is , 

where g() is the density of state, and hence the integration is 
taken over all allowed frequencies.
Or;

Debye stated the integral limit : (from 0 to D), where D is the cut off 
frequency which is known as Debye frequency and given by
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Or;
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Here D is Debye temperature.
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Specific heat Cv then can be found to be,

Low T limit:

High T limit:

Note that;   D ~ D ~ vs n1/3

Hence;
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The stiffer the crystal and 
the smaller the mas , the 

higher is D



In metals, the heat is carried both by electrons and by lattice waves 
(phonons), although the contribution of the electrons is much the 
larger. 
In insulators, on the other hand, heat is transmitted totally by 
phonons.

When thermal energy propagates through a solid, it is carried by 
lattice waves or phonons from the hotter to the cooler end.  
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The thermal energy flux (J/m2s) is proportional to the 
temperature gradient as:

Where  is thermal conductivity, since

and v wave velocity

Cv heat capacity per unit volume

l mean free path of scattering



There are three basic mechanisms to consider:

2. Sample boundaries (surfaces)

3. Other phonons  (deviation from harmonic behavior)

1. Impurities or grain boundaries in polycrystalline sample
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To understand the temperature dependence of , let us consider the 
limiting values of  Cv and   l (since  v does not vary much with T).

Temperature-Dependence of 



Temperature-Dependence of  CV l 

low T  T3

nph  0, so

l  , but then

l  D (size)

 T3

high T 3R  1/T  1/T

 T3

 T-1



Having studied the structural arrangements of atoms in solids, 
and the thermal and vibrational properties of the lattice, we now 
consider the electronic properties of solids in terms of a very 
simple model.

 Electrons free to move in a background of uniform (+ve) charge 
provided by ions (jellium model), i.e. electrons behave like a gas. 
 No interactions between electrons, because of:
1. Pauli exclusion.
2. To minimize the system energy, electrons tend to stay away of 

each other.

FE is a simple model for the behaviour of valence electrons in a 
crystal structure of a metallic solid. It was developed principally by 
Sommerfeld who combined the classical Drude model with quantum 
mechanical Fermi-Dirac statistics and hence it is also known as the 
Drude–Sommerfeld model.



A valence electron in a free atom, becomes a conduction electron in a 
solid.
 The core electrons do not contribute anything to the electric current.
Hence,

Conduction Electrons

No. of conduction electrons = No. of atoms × atomic valence
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Where M`is the molar mass of the element (gm/mole).

Apply external electric field () on a wire has 
a length L and cross section A, we find:
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Where J is the current density, and  is the electrical resistivity 
=1/ ( is the electrical conductivity).

Electrical Conductivity



 According to Ohm’s Law:  J

When external electric field is applied two main things happen:

1. Coulomb force causes electrons to accelerate with             , 
where vd is the drift velocity . 

2. Scattering (with other electrons, ions, impurities etc) produces 
a decay of vd back to zero. This retardation is represented by: -
vd/, where  is the relaxation time. 

(1)
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Adding up total force on electron, we get: 
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In steady state, dv/dt=0, and hence

But since J represents the amount of charge crossing a unit 
area per unit time, then 

(2)

(2)
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Comparing (1) with (2) leads to;

Since  is the time between two following collisions, it can be 
expressed as;

rv

l


rvm

lNe



2



Where l is distance between two following collisions (electron’s 
mean free path) and vr is the random velocity. 
Using these terms () can be rewritten as

( ~10-14 s in metals )

N ~1029 m-3 & vr ~106 m.s-1   ~ 107   W-1.m-1In metals :

In semiconductors: N ~1020 m-3 & vr ~104 m.s-1   ~ 1 W-1.m-1



The mean free path, l , for electrons in metals may be estimated via:  
vr  = l . This give l ~ 10-8 m ~ 102 Ao, which is 20 times larger than 
the interatomic spacing. 
i.e, electrons can move freely in a perfect periodic  structure. 
scattering occurs when periodicity is interrupted by phonons or 
impurities. 
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In metals, the temperature dependence of  is determined by , 
according to the relation:

But total scattering rate  given by addition of two individual 
scattering rates: 

Temperature dependence of Electrical Resistivity

Therefore;

Matthiesens' Rule. 
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Temperature dependence of Electrical Resistivity

Causes  the ideal resistivity , ph , which is dependent of T.

1- Impurity Scattering 

Causes the residual resistivity, i , which is independent of T. 
It is determined by distance between impurities. 

2- Electron-phonon scattering

 At very low temperature, scattering by 
phonons is negligible. So  

ph  & ph 0  and hence   i

 At high temperature, no. of phonons 
increases , hence scattering, as T increases. 
 proportional to 1/T
(true for T > ¼D).
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Based on Drude model, the average energy of electrons per mole is :                    

Hence, the electrons heat capacity is

The total heat capacity in metals should then be;

This means that at high temperature

C=4.5 R ~ 9 cal/mole K

HEAT CAPACITY OF CONDUCTION ELECTRONS

But experiments show that the total 
C for metals is only slightly higher 
than for insulators,which conflicts 
with the classical theory!

In specific, Ce should be smaller than the 

classical value by tow order magnitude.



 Pauli's exclusion principle implies that only 2 electrons of 
opposite spin orientation are allowed in each state. 

 At T = 0K , electrons occupy all energy levels from the ground 
state upward. The energy of the highest filled state is known as 
the Fermi energy. All the levels above are empty.

Quantum explanation

 In metals the value of the Fermi energy is of the order of 5 eV.

 The kinetic energy of the electron 
gas increases with temperature. 

What happens if the temperature is increased? 

 Electrons with energy ~ EF can gain 
thermal energy and occupy energy states EF.

 It is the electrons near EF that 
dominate the properties of the metal. 



 The distribution of electrons among the levels is usually described by 
the distribution function, f(E), which is defined as the probability 
that the level E is occupied by an electron.

 Thus if the level is certainly empty, then, f(E) = 0, while if it is 
certainly full, then f(E) = 1. 

The Fermi distribution
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 Using this distribution function, one can find energy of electron 
gas, hence the heat capacity of the electrons.

Which leads to an approximate thermal energy

Hence, the electrons heat capacity is,

 No of exited electrons per mole is;
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Or                          

With EF = kTF, where TF is Fermi temperature.

 The exact value of electrons heat capacity is then,

Ratio of exited electrons
~ 10-2

(1)



In metals, the electronic contribution to  far outweighs the 
contribution of the lattice.  So we can write:
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Since electrons that can absorb thermal energy and therefore 
contribute to the heat capacity have energies very near EF, so 
they essentially all have velocity vF.  This gives:
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Using (1) & (2);
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Now the thermal conductivity per unit volume is:
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In impure metals or in disordered alloys, the electron mean 
free path is reduced by collisions with impurities, and the 
phonon contribution may be comparable with the electronic 
contribution.

Do the electrons or the phonons carry  the greater 
part of the heat current in a metal?

In pure metals the electronic contribution is dominant 
at all temperatures. 
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